A haemoglobin molecule consists of four chains of amino acids twisted together. Let us think about just one of these four chains. It consists of 146 amino acids. There are 20 different kinds of amino acids commonly found in living things. The number of possible ways of arranging 20 kinds of thing in chains 146 links long is an inconceivably large number, which Asimov calls the 'haemoglobin number'. It is easy to calculate, but impossible to visualize the answer. The first link in the 146-long chain could be any one of the 20 possible amino acids. The second link could also be any one of the 20, so the number of possible 2-link chains is 20 x 20, or 400. The number of possible 3-link chains is 20 x 20 x 20, or 8,000. The number of possible 146-link chains is 20 times itself 146 times. This is a staggeringly large number. A million is a 1 with 6 noughts after it. A billion (1,000 million) is a 1 with 9 noughts after it. The number we seek, the 'haemoglobin number', is (near enough) a 1 with 190 noughts after it! This is the chance against happening to hit upon haemoglobin by luck. And a haemoglobin molecule has only a minute fraction of the complexity of a living body.